Representation Learning
and Information Retrieval

Kuan-Yu Chen (it 5 %)

2020/12/11 @ TR-313, NTUST



HW5

Team Name

80847002S_&K%

FIEEASTERE

M10915027_FARkIE

BIEASEEERE05. .

HeEMU TS (NEERIFR)

B10615034_&10%8
TR\ HiEman@
80847001s_EEX Y
Eric_S

jii_liao

Enilesab
BILAREHIEEETS. ..
QQQ
M10915006_E &%
For Fun

hongyun

M10915019_EEIARE

SummerSHIT

60947036S_Z{85E

Notebook

Team Members

9900090099900 00000©09 99

Score @

0.59666

0.57917

0.56956

0.56753

0.56593

0.56472

0.55821

0.55781

0.55121

0.53861

0.53853

0.53813

0.53807

0.53794

0.53568

0.53489

0.53436

0.53388

0.53301

0.53296

# Apub  Team Name Notebook Team Members
1 — 80847002S_#XZ
2 — IFRERSMER
3 «3 HeL TS (EETIFR)
4 -3 B10615034_E135
5 — RIEASMERRE0S...
6 -2 M10915027_FAglE
7 -9 For Fun
8 N 80847001s_EEX AL
9 16 EERERH
10 a2 Enilesab
1 al M10915006_EE&%
12 ~10 FatlLee
13 -5 TR\ HEman @
14 a7 BT baselinei#20%5?
15 w5 Eric_S
16 5 jiiliao
17 v4 AILAAREHIER60S. ..
18 -8 M10915100_3FE R

19 v5 QQQ

€ b @4 &) d)d) ))& )< & &) s 4 <) 4 <

20 B/

Score @

0.56026

0.55615

0.55404

0.54435

0.53125

0.53016

0.53006

0.52816

0.52021

0.51904

0.51316

0.51069

0.50861

0.50770

0.50746

0.50701

0.50669

0.50643

0.50593

0.50404



Final Project.

« The presentation order is announced

Presentation-1

M10915100 ZRORE,. D10907005 fEOZE. M10915034 EHOjEA. M10915066 EOH
M10915103 EROfE. M10915006 BEOZZ, M10915046 FROZE. M10915092 RO
M10915095 E£OF]. M10915050 #ROH . M10909112 H0Z, M10909120 BEOES
M10909211 Z2OW. M10909118 3ROE . M10909109 [HOJZ. M10909114 Z=05]]
80847002S ZZO7Z. 80847001S BHORL. 60947058S EOFt. 609470128 FOF
M10815111 O, M10815112 EFOE ., M10915017 PROER

M10915201 BEOJL. M10915097 4088, M10815064 {ZOFK

M10915012 EHOE., M10915036 FORBE. M10915082 5RO

M10915045 {807, M10915031 EfO5z%. M10915080 ZEOFE

M10915019 BEORE. M10915013 FOF). M10815103 [HOE

M10915028 FEOZE), M10815036 FEOfE, M10815048 5ROTHK

1/8

Presentation-2

B10615013 Z20f5, B10615024 Z20%=. B10615026 iB0F). B10615043 {aJOlUE
B10615022 Z200Y. B10615034 =O&). B10615036 =0O%%. B10615056 =0
B10615047 fEO%E. B10615017 #ROZL. B10615023 #50Z&. B10615039 H0OE
B10632026 2015, M10907505 JH70E5. M10915010 O

1/15 | B10615046 fAJO%. B10615045 [HOE. B10601002 B2O#E

M10802131 ZXOF, M10802130 [HOIE

M10915060 #RO&E. B10430302 FFOFR. M10815090 =HOR,. M10915002 FFOLE
M10815013 PEOIE. M10815074 5RO%H

M10915027 FOIE, B10615033 FO18

B10630024 2|03, B10630040 RO7=




Final Project..

B BAR R E sr i —dH[E 22 B 2 — (b 5e £/
- AU B RER M E B = iRy H BSOS IR E S AE H

- ARG TEREUA ] UM ER AR =i F DUE H A (TR AJ LLE
FHEEHE

- FEEAEFE R LUE R E—(EE AT ERTIRMHEE 54

4l [ SR 10~ 1557 8

- (a) L L TEE

- (b) e &=/

- (o) FRRE Y ERVE 1 (R ik?

- (d) EhgsS R AR

- BRI EGOCER . R fE &source codes

A7 i
- BRI RE(EH AR 13%
- [EAE(EEE) 2%



Review

Pseudo-Relevance Feedback Methods
— The Rocchio’s Algorithm

— Relevance Model
« Topic-based RM
« Word-based RM
— Simple Mixture Model

— Tri-Mixture Model

Methods for Selecting Pseudo Relevant Documents
— Gapped Top-K
— Cluster Centroid
— Active-RDD
— Resampling Method



KL-Divergence.

In mathematical statistics, the Kullback—-Leibler divergence is
a measure of how one probability distribution is different
from a second reference probability distribution

— It also called relative entropy

) Reference Distribution
— For discrete case

I
KL@lld) = Y P (olog L

xeX

P;(x) #= Approximation

_ Distribution
— For continuous case

. P
KL(q||d) = j_ Py (0)log . 8 dx

— It is the expectation of the logarithmic difference between
the two distributions

— Relative entropy is always non-negative



KL-Divergence..

o Since the Kullback-Leibler divergence is a measure of how a
distribution is different from a reference distribution, it is
not symmetric

9 12 4
P,(x) 9 [o5\ 12 [oc\ 4 /95
KL(q||d) = Z P,(x)log T = —In| =22 |+ —=In| =22 |+ —=In| =22 | = 0.0852996
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KL-Divergence...

 Kullback-Leibler (KL)-Divergence measure is a LM-based IR
method

Reference Distribution

KL(qlld) = ) P(lwm)log Pvia)
g P(W|dj)4— Approximation Distribution

wev

— z P(w|q)logP(w|q) — z P(w|g)logP(w|d;)

A4 wEevV

o< — Z P(w|q)logP(w|d;)

wevV

— Query and document are both in the form of probability
distributions



KL-Divergence....

 Zero probability problem

— Using background language
o Similar to the role of IDF!

KL(q||d;) < — z P(qu)logP(W|dj)

wev

P(wlq) = a X Pypyy(w|q) + B X Pry(Wlq) + (1 — a — B) X Pgg(w)

P(w dj) =y X Pypy(wld;) + (1 —y) X Pgg(w)
« How to speedup?

KL(ql|d) « — Z P(wlq)logP(w|d,)

wev

c(w,q)
]
C(W, d])
;|
deep c(w, dy)

Pyrvwlq) =

Pyim(w|d;) =

P —
rW) =y I



Various Query Modeling

« Vector Space Model
— Rocchio’s Algorithm

Language Models
— Relevance Model
— Simple Mixture Model

— Tri-mixture Model
— PLSA?

« Probabilistic Model
— BM25?

10



The Evolution

David M. Blei
Columbia University, USA

Thomas Hofmann
ETH Zurich, Switzerland

(72003 Latent Dirichlet Allocation
{2001 Relevance-based LM & Simple Mixture Model

1999 Probabilistic Latent Semantic Analysis
/7 ,
»* 1998 Language Modeling Approaches

V. Lavrenko C.X. Zhai
Edinburgh [llinois University

£ 1994 Best Match Models (Okapi Systems)
Stephen Robertson, 1946-present { 1988 Latent Semantic Analysis

£ 1976 Probabilistic Model

w
I./l 9 7 3 B 0 Ole an MO del Frederick Wilfrid Lancaster, 133—20 13

' 1972 Inverse Document Frequency

1965 Rocchio Algorithm

,v 1957 Term Frequency

1975 Vector Space Model

Karen Spérck Jones, 1935-2007
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What are we looking for?

« A Wonderful Function!

— Speech Recognition

) = Itis a nice day today

— Handwritten Recognition

TEre day wlyy )= Itisa nice day today

— Machine Translation

f("SRKKEKRFIRGE") = Itisa nice day today

12



Bible

[an Goodfellow and Yoshua Bengio and Aaron Courville, Deep
Learning, MIT Press, 2016

I
, [/ 98 ¥ s 8 H
* Aan Goodfellow, Yo
N f-imn:{Aaroh Coury
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Book Signing at NIPS 2016

BRI R

13/20

1&% Yoshua Bengio
168 12H6H - @

Book signing session at NIPS with lan
Goodfellow and Aaron Courville was a big hit. All
the Deep Learning books that MIT Press brought
were sold in just a few hours. Bestseller in Al and
our MIT Press contact says she's never seen that
kind of frenzy (well, for a scientific book, |
suppose) &

P.S. NIPS itself is at an all-time high... 6000
attendees!

PR

= P =

OO =5 - lan Goodfellow It 670 A

18RHE
HEsEE

Wojtek Kryscinski Restock needed at
NIPS! Come on MIT Press!

B owmEER s o
("3 Carole Sicard Félicitations!!!
. Yannick Pouliot Well earned!
# OEEER
Q Alexandre Lacoste Congrats! That's
amazing & ... | wish they would have
better predicted the needs though.

Nicolas Chapados MIT Press Demand
Forecasting #FAIL. They should have
read my ICML paper &2

= oEnEEE = O

&

Célia Moréno Bravo, bravo!

& OEEER

S
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Neuron

Dendrites (1&3%)

@_ N Trigger (Fg33&)

S Ax0n (E172) Conducting (BEE)

Output (&t =)

oo
Bipolar Unipolar Multipolar Synapse (5<#)
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Handcrafted Neuron

16



Single Neuron

W i
SIS Activation /
function -7
X, W, :
2
; —‘— y
LW

b 1+e

bias




Neural Networks — a hidden layer

1‘(x)=a(\/V2 -0(\N1-X+b1)+b2): y

Output Layer

1 A
~ Wl
W 0.5 4
,I\ Hidden Layer /
W K neuron : -

Input Layer

18



Neural Networks — two hidden layers

o It is the well-known fully-connected feed-forward neural
network

Output Layer

W3
Hidden Layer
W 2 f(X)IO‘(\/V3°G(\/\/2-O'(\Nl'X+b1)+b2)+b3)
N Hidden Layer
Wl neuron

Easy to implement: tools
Input Layer Highly computational Cost: GPU
Hyper-parameters: ?




Deep Neural Networks

« Deep Neural Networks
— G. Hinton (UTORONTO & Google) @IEEE Signal Processing
Magazine 2012

- more than one layer of hidden units

— D. Yu (Microsoft Research) @Automatic Speech Recognition
2015

o The term deep neural network was originally introduced to mean
multilayer perceptron with many hidden layers, but was later
extended to mean any neural network with a deep structure

— Rich Caruana (Microsoft Research) @ ASRU2015
 three hidden layers

20



Deep Learning & Deep Neural Networks

« Yoshua Bengio (UMONTRAL) @Deep Learning, 2015

— Deep learning has a long and rich history. It only appears to be
new, because it was relatively unpopular for several years
preceding its current popularity, and because it has gone
through many different names.

« 1940s~1960s: cybernetics (McCulloch-Pitts Neuron, 1943;
Perceptron, 1958)

« 1980s~1990s: connectionism (Neocognitron, 1980)

« 2006~: deep learning

0.000250 % T I | ! | T
— cybernetics :

0.000200 % H — - {connectionism -+ neural networks) <

0.000150 % |- ---- - B e e T ST SR .

0.000100 % -

0.000050 % |-

0.000000 % _—d = = = ' '
1940 1950 1960 1970 1980 1990 2000



Neural Networks with Memory.

« Conventional neural network can only capture local

information

— Samples are independent

— Time series data
« Word sequence
 Picture sequence
Movie
« Speech Signal

Output 1 Output 2 Output 3 Output4 Output 5

] ] 1] ] ]

DNN DNN DNN DNN DNN

Inputl Input2 Input3 Input4 InputS
OQutput 1 Output 2 Output 3 Output 4 Output 5

i 10§ i i i
> RNN [—> RNN |=> RNN [—> RNN [—> RNN

Inputl Input2 Input3 Input4 Input5



Neural Networks with Memory..

« Hidden layer can be thought as a memory!!

y; - output layer

L o o o
A XXX NN

o

sj:hiddenlayer @ & & o

N

t

X: :input layer

y; : output layer

L o o o |
A XXX NN

o/

sj:hiddenlayer @ @ o o

X, »input layer 23



Neural Networks with Memory...

Elman-type RNN

yj :output layer

e e o O
eeoeo oo

o/

sj:hiddenlayer @ & & &

X; :input layer

Jordan-type RNN

y; . output layer
L o o O

2000000 Yia

>/

sj - hiddenlayer (@ @ & &

e

4

X; :input layer
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RNN, LSTM & GRU

« RNN @f) @ @
— The classic model
Bt
I | |
&) ® &)
t t

— Learning to forget N W
— Capture longer information { A % s Mie > A }:
— Very slow in practice | g 7N

®)

« GRU

— A balanced choice




Parsimonious Neural Networks

 For image processing, the conventional neural networks have
to estimate too many parameters

— For a 1024"1024 image, the size of the input layer is up to
1,048,576

— If the size of the first hidden layer is 100, the number of model
parameter is over 104,857,600

1,024%1,024
inpﬂ layer output layer
o wden IaV ; ->
: " o>
o>
e U e v
o>
- -
->
- - o
. o>
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Convolution Neural Networks

o Inspired from the visual cortex, each neuron can only
perceive a sub-region (perceptive field) at a time

— Convolve the filter with the image

— If we have two filters (2*2 and 4%4), the total parameters are
4+16=20

« Parameter sharing!

Feature Maps
1,024 1,024 1,023*1,023

272 filter
convolve (slide) over
all spatial locations

[
»

27



Parameter Sharing

1,02471,024

1,023"1,023

272 filter
convolve (slide) over

all spatial locations _

input layer
1,024%1,024 hidden layer
; 1,023%1,023+1021*1021
o)
. -. * * * *
o : (1024*1024)*(1023*1023+1021*1021)
: % ]
® | 2°2+4%4
o |
| P
. ------
° -
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Joint the Trend!

« You can build your own architectures easily and flexibly

« Do not need to take care about the mathematics

— Optimization is only a function!

1 TensorFlow O PyTorch . Keras

B® Microsoft

CNTK Scaer QQDccfiCaffe |t
- QP aBerkeley VisionProject " " “iatafntatia
6GLUON ¥ torch Q Chainer )Mguf”él theano
Netwaork

— Open Neural Network Exchange C/oﬁs{)lé\

€ ONNX .




One Framework to Rule Them All

%

Dr. Fei-Fei Li % k She is a chief scientist at Google

ghieflsii:nti:t of Al 4 Cloud from 2016 to 2018
@Global Conference 2017 //// . A
Google: Facebook:
TensorFlow PyTorch +Caffe2

T .

“One framework

to rule them all” Research Production

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - 151  April 27, 2017



Language Modeling

« A goal of statistical language modeling is to learn the joint
probability function of sequences of words in a language

P(Wl, W,, ...,WT)

A statistical model of language can be represented by the
conditional probability of the next word given all the

previous ones (chain rule)

P(Wl, Wy, ...,WT) =

Q

— Such statistical language models have already been found useful
in many technological applications involving natural language

T

t=1
T

t=1

A

P(welwy,wy, oo, We_q)

P(Wt |Wt—n+1' ) Wt—l)

31



y Language
NN-based ] Representations
| ./ (2013~)

Language Models

: Continuous
Continuous
Language Models
Language Models (2007~2009)

Topic Models (1997-2003) [l & <55 %™ Topic Models

Query Language
Models (2001~2006)

Word-Regularity
Models (~1997)

N

2000 2002 2004 2006 2008 2010 2012 2014 2016 32



Y. Bengio, et al., “A Neural Probabilistic Language Model,” in Proc. of NIPS, 2001.

Neural Network Language Modeling

e The Neural Network Language Mode (NNLM) estimated a
statistical (n-gram) language model for predicting future

words
T
P(wy,wy, ..., wr) = ‘ ‘ PWelw—ny1) oo Weoq)
t=1
on
4
Dense Representation Concatenate/Average A

One-hot Representation A A A 33
the cat sat



From Modeling to Vectorization

Recent methods for learning vector space representations of
words have succeeded in capturing fine-grained semantic
and syntactic regularities

— One-hot representation vs. Distributed representation

The two main model families for learning word vectors

1. Global matrix factorization methods
« Global Vector

2. Local context window methods

 Continuous Bag-of-Words model, and Skip-gram model

34



Y. Bengio, et al., “A Neural Probabilistic Language Model,” in Proc. of NIPS, 2001.

NNLM

« Perhaps one of the most-known seminal studies on

developing word embedding methods was rooted in the
Neural Network Language Modeling (NNLM)

on
Dense Representation Concatenate/Average A

One-hot Representation A A A
the cat sat

— It estimated a statistical (n-gram) language model for
predicting future words in context while inducing word

embeddings as a by-product 35



One-hot to Dense

on
A

NRRNRRRRNRRRRRRRRN]

N

Concatenate/Average um

A
OIII111m 11111 (RRRRRREN
I OTTTIT T TTTIT) O aTn
A A A
the cat sat
I
1 X =

36



T. Mikolov, et al., “Efficient Estimation of Word Representations in Vector Space,” in Proc. of ICLR, 2013.

Continuous Bag-of-Words Modeling - 1

 Rather than seeking to learn a statistical language model, the
CBOW model manages to obtain a dense vector

representation (embedding) of each word directly

WEV exp(th ) vW)

T T
exp (v\/\_/t ’ th)
P(We|We_c, ooy Weo1, Wegq) ooy Wege) =
t=1 t=1 Z

cat 1 <
Vi, = 2c Z Vweyj
4 j=—C&&j#0
Avey \
A A
the sat

37



T. Mikolov, et al., “Efficient Estimation of Word Representations in Vector Space,” in Proc. of ICLR, 2013.

Continuous Bag-of-Words Modeling — 2

T T
exp(Vw, * Vw,)
P(We Wi_c) ooy W1, Wegq) ooy Wege) =
t=1 t=1 Z

WEV exp(th ) vw)

cat

A
cat ANRRRRRRRRRRRRARNE
A

(]

Aveyy \ AveragV \

‘ ‘ ANRNRANANNANRRNANA|NRRNRNRRNARNRNRANA
the sat A A
the sat
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T. Mikolov, et al., “Efficient Estimation of Word Representations in Vector Space,” in Proc. of ICLR, 2013.

Skip-Gram Modeling

In contrast to the CBOW model, the SG model employs an
inverse training objective for learning word representations

the sat

— .

P(Wt—C' oW1, Wi 1, -0, Wt+C|Wt)

e ~N

= P(Wt+j|Wt)
t=1 j=—c&&j%£0 A
T c
eXP (U, * Vi)
10 11 Ywerv €Xp(vy, - vy,,) ¢
t=1 j=—c&&j+0 ~WEV W TWe cat

— In the implementations of CBOW and SG, the hierarchical
soft-max algorithm and the negative sampling algorithm
can make the training process more efficient and effective

39



The Training Process

« Negative Sampling

— Noise contrastive estimation (NCE) posits that a good model
should be able to differentiate data from noise

» Take skip-gram for example

P(Wi_c) oy W1, Wig1, ooy Wege[We)

II‘H{_1H
e

Cc

1_[ P(Wt+j|Wt)

Jt= 1j= c&&]:tO

T

r c
eXp(th+ th) eXp(th_l_j . th)
I I I I exp(vy, * v I I I I exp(v,, v

Hierarchical Softmax

— The main advantage is that it is needed to evaluate only about
log, (V) nodes

40



F. Morin andY. Bengio, "Hierarchical Probabilistic Neural Network Language Model,” in Proc. of AISTATS, 2005.

Hierarchical Softmax.

« For a Huffman tree, every left branch is coded with 0 and
every right branch is coded with 1

— For a character sequence: AAERZ
« By Huffman Coding Scheme: 000001111011
By Original Coding Scheme: 000000001010110

Character Code Original Coding
A 00 000
E 01 001
R 11 010
W 1010 011
X 1000 100
Y 1001 101
VA 1011 110

41



Hierarchical Softmax..

« For a Huffman tree, every left branch is coded with 0 and
every right branch is coded with 1

— For a character sequence: AAERZ
« By Huffman Coding Scheme: 000001111011
By Original Coding Scheme: 000000001010110

P(A) = 0.7 X 0.2
P(E) = 0.7 X 0.8
P(X) =0.3x0.4x0.5x%x0.1
P(Y)=03x%x0.4x05x%x09

P(R) = 0.3 X 0.6

42



Hierarchical Softmax...

cat
A
Aveyr \
A A
the sat
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Hierarchical Softmax....

cat sat
dog stand

E golc;d/l
L 2

Avey \

A A

the sat
44



J. Pennington, et al., "GloVe: Global Vectors for Word Representation," in Proc. of EMNLP, 2014.

Global Vector Model (GloVe)

The idea is:

— For word solid related to ice but not steam, we expect the ratio:
+ Pce—solid / Psteam—solid will be large
« Pice—gas/Psteam—gas will be small

should be close to one

Fice— fashion / Psteam— fashion

The starting point for word vector learning should be with
ratios of co-occurrence probabilities rather than the
probabilities themselves

— A weighted least squares regression model can be introduced to
addresses these problems

v| v ,
f(XU) (vWi . ij + bi + b] — lOg(XU))

i=1j=1
45



Singular Value Decomposition

e The SG and the GloVe have an implicit/explicit relation with
the classic weighted matrix factorization approach

« Motivated by the relationship between word embedding
methods with matrix factorization, we also leverage the
singular value decomposition (SVD) to derive the word

embeddings

Awixiv) = Uik Exsik Vixv) = Alvix|v]
44
IA—A'llf = Z z(log(xij) ~uT-x-U)°
i=1j=1
— Each row vector of matrix U (or the column vector of matrix V')
is the word embeddings corresponding to each distinct word in
the vocabulary

vi vl

2
Zf(XU) (Uwi . ij + bi + b] - lOg(X”)>
i=1j=1



Classic Word Embeddings

 Various word embeddings have been proposed and applied to
several NLP-related tasks
— Prediction-based Methods
« CBOW and Skip-gram
O Local context
— Count-based Methods

« GloVe and SVD
O Global matrix

47



Word Embeddings for IR-1

o A straightforward way to leverage the word embedding
methods for IR is to represent a document (or query) by
averaging the vector representations of words occurring in
the document (query)

J=ZC(W’d)v d=26(w,q)v
d] " lql "

wed WE(q

 Accordingly, the cosine similarity measure can be used to
quantify the relevance degree between a document and a

query

d-g
4] - 14

sim(d, q) = cos(d, ) =

48



Word Embeddings for IR - 2

o In addition to the vector space model, we can construct a new
word-based language model for predicting the occurrence
probability of any arbitrary word by using the word
embeddings

exp (ij ) vwl-)

P(w:lw:) =
(W] |Wl) ZWEV eXp(vw ) vwl-)

- Consequently, the document model can be obtained by
linearly combining the associated word-based language
models of the words occurring in the document

lq| lql [/ |d]|
P(q|d) = HP(w]|d = 1_[ <Z P(lewl)P(Wl|d)>

49



Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in Proc. of ICML, 2014.

Distributed Memory (DM) Model

 Learning of paragraph representations is more reasonable and
suitable for some tasks

— The distributed memory model, the distributed bag-of-words
model, and the thought vector model

e The DM model is inspired from the CBOW model

on

[IIIITIT 071101 001010
A A A A
Paragraph the cat sat

— The idea is that a given paragraph also contributes to the
prediction of a next word

50



Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in Proc. of ICML, 2014.

Distributed Bag-of-words (DBOW) Model

« Opposite to the DM model, a simplified version is to only
leverage the paragraph representation to predict all of the
words occurring in the paragraph

O T T

(IIIITIT]
A

A
Paragraph

« Since the model ignores the contextual words at the input
layer, it is named the distributed bag-of-words (DBOW)
model

51



R. Kiros, et al., “Skip-thought vectors,” arXiv:1506.06726, 2015.

Skip-Thought Vector Model

o The skip-thought vector model presents an objective function
that abstracts the skip-gram model to the sentence level

— Instead of using a word to predict its surrounding context,
thought vector encodes a sentence to predict the sentences
around it

got back home

could see the cat

This was strange

52



Classic Paragraph Embedding Methods

o Classic paragraph embedding methods infer the
representation of a given paragraph by considering all of
the words occurring in the paragraph

— Such as the Distributed Memory model, the Distributed Bag-of-
words model, and the Skip-Thought Vector model

« The stop or function words that occur frequently may
mislead the embedding learning process

— The learned representation for the paragraph might be
undesired

— The performance is limited
— Our goal is to

« Distill the most representative information from a given paragraph

o Get rid of the general background information
53



K.Y. Chen, et al., “Learning to distill: the essence vector modeling framework,” in Proc. of Coling, 2016.

Learning to Distill

- We assume that each paragraph can be assembled by the
paragraph specific information and the general
background information

— This assumption also holds in the low-dimensional

representation space Reconstructed Reconstructed
Paragraph General Background
— Three modules
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Essence Vector-based Language Model

A brilliant property inherits in the EV model is that it can be

readily inferred a “paragraph” specific language model

Paragraph Specific Recons tructed Reconstructed

Pw) = h(f(Pp,))
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Questions?

kychen@mail.ntust.edu.tw
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